

DOR Technology Improvements

Chris Volk & James Border

Delta Differential One-Way Ranging (△DOR)

- ADOR uses interferometry to measure spacecraft angular position in the radio reference frame
- Observations from 2 (long) baselines are needed to measure both components of angular position

△DOR Navigational Purpose

- Complements line-of-sight Doppler and range to provide plane-of-sky coordinate targeting for critical events
 - High accuracy is needed for targeting a Mars landing
 - 300 m plane-of-sky position accuracy at Mars (~1 AU)

△DOR Historical Accuracy Improvement

Motivation for Further Accuracy Improvement

- Improved \(\DOR\) measurement accuracy provides the following benefits:
 - Would lessen need for long Doppler and range passes
 - Would enable targeting of a more narrow target corridor
 - Can avoid necessity for performing a late maneuver, if a high targeting accuracy is achieved at an earlier time
- Other opportunities for technology improvements:
 - Current 1 MHz DOR tone provides ambiguity resolution of just 1 µs. For missions with lower a priori position knowledge, larger ambiguity resolution is desired.

Baseline ADOR Error Budget (X-Band)

Dispersive Phase, The Dominant Error

- Dispersive phase is a result of the frequency dependent instrumental phase shift of the recorded signals.
 - Not common to s/c and quasar due to difference in spectrum.
 - Remains as key error source in ∆DOR measurements.

Pseudo-Noise (PN) DOR Signal

- The S/C DOR tone can be spread by a PN sequence.
 - The resulting spectrum is spread by chip rate of the PN code, and further flattened by use of a pulse shaping filter.
 - Estimated cancellation of ~90% of the dispersion error.
 - A long sequence (~1 ms) can be used for ambiguity resolution.
 - CDMA techniques can measure multiple s/c simultaneously.

Pseudo-Noise (PN) DOR Signal

- JPL's IRIS CubeSat radio is capable of transmitting spread spectrum PN code DOR signals.
- Recorded spectrum closely matches quasar spectrum.

8 MHz PN-DOR

8 MHz Quasar

Ka-Band △DOR

- Remaining error sources can be reduced by going to a higher frequency signal, Ka-Band (32 GHz)
- Advantages of Ka-Band
 - 4x Wider spanned bandwidth from wider spectrum allocation
 - 4x Higher sampling rates due to increased DOR tone spacing
 - 3x Less quasar coordinate error since quasars generally have smaller cores and less structure. (work in progress)
 - 15x Less charged particle errors at higher frequency (due to 1/f² dependence)
 - Ionospheric effects and solar plasma effects are greatly reduced
- Disadvantages of Ka-Band
 - 2.5x Less flux from Quasars
 - 2x Increased antenna system temperature

Better Troposphere Calibration

- JPL is developing the In-line Water Vapor Radiometer (WVR) which measures water vapor along the same radio antenna path as the spacecraft signal.
 - Driver is improved Doppler data, but will benefit ∆DOR also.
 - Better beam matching increases performance over short time scales necessary for ΔDOR (30-100 seconds).
 - Increased sensitivity over previous designs
- Expected reduction in troposphere errors by a factor of 2.

Improved △DOR Error Budget (PN, Ka, WVR)

Summary

- Limiting terms within current ∆DOR error budget include: thermal noise, dispersive phase, ionosphere effects, troposphere effects, and coordinate uncertainty.
- Current technology development efforts aim to reduce leading error sources over next few years.
 - Ka-band (operational): 2x less source thermal noise,15x less ionosphere error, 3x less quasar coordinate uncertainty
 - PN DOR (operational late 2019): 10x less dispersive phase
 - In-line WVR (prototype late 2020): 2x less troposphere error
- Improves △DOR error budget from 2 to 0.75 nrad
 - Improves targeting accuracy for Mars landing and other missions.

jpl.nasa.gov